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Overall Objective

Increase the interpretability of robot action execution so that execution failures can be analysed - important for users so that they understand the reasons for failures, but also for
robots so that they can learn from failures more effectively

Execution Model Representation [1]

I Execution model represents execution-specific action knowledge

I Formally defined as M = (R,F ) with R relational and F continuous

I Qualitative action modes represented by a collection of relational
models: R = (R1, ..., Rm)

I Optional action constraints incorporated as inputs to F

I Execution parameters sampled from F and verified by R

Relational success model R:

I Extracted from a predefined
set of qualitative attributes

I Models semantic execution-
specific knowledge

I Learned from successful exe-
cution examples

Success prediction model F :

I Represented by a Gaussian
Process regression model [2]

I Predicts execution success
given action parameters

I Learned from positive and
negative execution examples

A: Drawer handle grasping B: Fridge handle grasping C: Object pulling

Action Random F only R and F
A 15 34 41
B 14 33 44
C 7 24 38

I Relational model introduces
conceptual constraints into the
execution process

I Verifying parameters using the
relational model increases the
execution success

Model Generalisation Over Object Classes [3]

I Objective: Generalise model Mõ learned for class õ to another class o

I An object ontology and generalisation trials guide generalisation

I Class generalisation preferences represented in a suitability graph

I Suitabilities Pt(õ|o, S) defined by a distribution of the form

Pt+1(õ|o, S) = η s(o, õ)P (S|õ, o)Pt(õ|o, S)

I Class o∗ selected for generalisation maximises the suitability over the
related objects Co:

o∗ = argmax
õ∈Co

Pt+1(õ|o, S = 1)

Object similarity s(o, õ):

I Guides generalisation based
on relations in an ontology

I Calculated using the Wu-
Palmer similarity measure [4]

Success probability P (S|õ, o):
I Represented by a Beta distri-

bution Beta(αoõ, βoõ) [5]

I Posterior updated based on
the generalisation outcomes

A: Object grasping B: Object stowing

Action Pitcher Glass Baseball

A
#models 2 1 1

o∗ / mug tennis ball
N+ 1 8 8

B
#models 1 1 1

o∗ sugar box / tennis ball
N+ 8 1 10

Model encourages adaptive general-
isation and informs about the need
for additional learning

Execution Failure Diagnosis [6]

I Failure diagnosis found as a violation of the relations in R

I Violation enables finding an alternative set of corrective parameters

Violation search:

I Failed parameters perturbed
until violations are found

I Perturbation done using sam-
pling from a diagonal Gaussian

Experience correction:

I Failed parameters sampled
away from region of violation

I Sampling done from a Gamma
distribution

Diagnoses with different sampling
region sizes

Diagnoses with varying samples per
region

Violation search parameters and the
relations in R affect diagnosability

Future Work

I Automatic or lifelong learning of relations for increasing the diagnosis quality

I Extending the diagnosis framework to deal with failures propagated over time

I Including object affordances in the generalisation framework

I Extending the generalisation framework to deal with a dynamic ontology
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