Hybrid Execution Models of Parameterised Actions for Explainable and Diagnosable Robot Action Execution

Alex Mitrevski[†], Paul G. Plöger[†], and Gerhard Lakemeyer[‡] [†]Autonomous Systems Group, Hochschule Bonn-Rhein-Sieg, Germany [‡]Knowledge-Based Systems Group, RWTH Aachen University, Germany

Overall Objective

Increase the interpretability of robot action execution so that execution failures can be analysed - important for users so that they understand the reasons for failures, but also for robots so that they can learn from failures more effectively

Execution Model Representation [1]

- Execution model represents execution-specific action knowledge
- Formally defined as M = (R, F) with R relational and F continuous
- Qualitative action modes represented by a collection of relational models: $R = (R_1, ..., R_m)$

A: Drawer handle grasping B: Fridge handle grasping C: Object pulling

- \blacktriangleright Optional action constraints incorporated as inputs to F
- \blacktriangleright Execution parameters sampled from F and verified by R

Relational success model *R*:

- Extracted from a predefined set of qualitative attributes
- Models semantic executionspecific knowledge
- Learned from successful execution examples

Action	Random	F only	R and F
A	15	34	41
В	14	33	44
С	7	24	38

- Relational model introduces conceptual constraints into the execution process
- Verifying parameters using the relational model increases the execution success

Model Generalisation Over Object Classes [3]

- Objective: Generalise model $M_{\tilde{o}}$ learned for class \tilde{o} to another class o
- An object ontology and generalisation trials guide generalisation
- Class generalisation preferences represented in a suitability graph
- Suitabilities $P_t(\tilde{o}|o, S)$ defined by a distribution of the form

 $P_{t+1}(\tilde{o}|o, S) = \eta \, \mathrm{s}(o, \tilde{o}) P(S|\tilde{o}, o) P_t(\tilde{o}|o, S)$

- Class o^{*} selected for generalisation maximises the suitability over the related objects C_o:

A: Object grasping

B: Object stowing

Action		Pitcher	Glass	Baseball
	#models	2	1	1
А	o^*	/	mug	tennis ball

Prior successful executions with previously manipulated objects

$o^* = \underset{\tilde{o} \in C_o}{\arg\max} P_{t+1}(\tilde{o}|o, S = 1)$

Object similarity $s(o, \tilde{o})$:

- Guides generalisation based on relations in an ontology
- Calculated using the Wu-Palmer similarity measure [4]

Success probability $P(S|\tilde{o}, o)$:

Success prediction model *F*:

► Represented by a Gaussian

► Predicts execution success

► Learned from positive and

negative execution examples

given action parameters

Process regression model [2]

- ► Represented by a Beta distribution $Beta(\alpha_{o_{\tilde{o}}}, \beta_{o_{\tilde{o}}})$ [5]
- Posterior updated based on the generalisation outcomes

	N^+	1	8	8
	#models	1	1	1
В	o^*	sugar box	/	tennis ball
	N^+	8	1	10

Model encourages adaptive generalisation and informs about the need for additional learning

Execution Failure Diagnosis [6]

- Failure diagnosis found as a violation of the relations in R
- ► Violation enables finding an alternative set of **corrective parameters**

Violation search:

- Failed parameters perturbed until violations are found
- Perturbation done using sampling from a diagonal Gaussian

Experience correction:

- Failed parameters sampled away from region of violation
- Sampling done from a Gamma distribution

Violation search parameters and the relations in R affect diagnosability

Future Work

- Automatic or lifelong learning of relations for increasing the diagnosis quality
- Extending the diagnosis framework to deal with failures propagated over time

References

[1] A. Mitrevski, P. G. Plöger, and G. Lakemeyer. Representation and Experience-Based Learning of Explainable Models for Robot Action Execution. In *Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS)*, pages 5641–5647, 2020.

[2] C. E. Rasmussen and C. K. I. Williams. *Gaussian Processes for Machine Learning*. The MIT Press, 2006.

- [3] A. Mitrevski, P. G. Plöger, and G. Lakemeyer. Ontology-Assisted Generalisation of Robot Action Execution Knowledge. In *Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS)*, 2021. To appear.
- [4] Z. Wu and M. Palmer. Verbs Semantics and Lexical Selection. In *Proc. 32nd Annual Meeting Assoc. Computational Linguistics*, pages 133–138, 1994.
- [5] D. Koller and N. Friedman. Parameter estimation. In *Probabilistic Graphical Models: Principles and Techniques*, chapter 17, pages 733–739. The MIT Press, 2009.
- [6] A. Mitrevski, P. G. Plöger, and G. Lakemeyer. Robot Action Diagnosis and Experience Correction by Falsifying Parameterised Execution Models. In *Proc. IEEE Int. Conf. Robotics and Automation (ICRA)*, 2021.

Hochschule Bonn-Rhein-Sieg University of Applied Sciences

- Including object affordances in the generalisation framework
- Extending the generalisation framework to deal with a dynamic ontology

Contact

Alex Mitrevski Hochschule Bonn-Rhein-Sieg Email: aleksandar.mitrevski@h-brs.de

Acknowledgement

We gratefully acknowledge the support by the Bonn-Aachen International Center for Information Technology (b-it).

